
SMC-IT 2019
DJB-1

Heavyweight Quality,
Agile Methods

Agility in Flight Mini-Workshop

DJ Byrne
Embedded Software Engineer, Flight Software Applications.

Jet Propulsion Laboratory, California Institute of Technology

2019-07-31

SMC-IT 2019
DJB-2

Quality Lives in Artifacts

n Any final product consists of a set of artifacts
oPrimary

l Executable image(s), Code base, User documentation

oSecondary / supporting

l Test results, Design descriptions, Reviews, Sign-offs

n Any work not captured in artifacts only matters *if* it improved some
artifacts' quality
oPrime example: email threads of technical discussions

© 2019 California Institute of Technology. Government sponsorship acknowledged.

SMC-IT 2019
DJB-3

Heavyweight Artifacts

n Heavyweight methods seek quality by creating an exhaustive set of
artifacts
oSo nothing is overlooked

oCan lead to low-value work

o One size fits all, vs Tailoring

o Is each artifact valuable to each project?

o If not, why can you live without that information?

oExample: waterfall methodology

oExcellent reference: NASA System Engineering Handbook (SP-2016-6105)

l https://www.nasa.gov/feature/release-of-revision-to-the-nasa-systems-engineering-
handbook-sp-2016-6105-rev-2

© 2019 California Institute of Technology. Government sponsorship acknowledged.

SMC-IT 2019
DJB-4

Agility in Artifacts

n Focus on what matters
n Does creation order really matter?

oA stitch in time saves nine.

l If you're going to do it eventually, when will it save other effort?

l One good test may be worth 1,000 "shall" statements

n Form should follow function – choose a format that reflects the
content's intended use
oText? Spreadsheet? Database? Script?

n Bake important things into tools
oDocumentation becomes lightweight pointers into the tools

n If it's quick to say, say it!

SMC-IT 2019
DJB-5

Keynote Example Sources

n MSL (Mars Science Laboratory, a.k.a Curiosity)
o1) TDS (Terminal Descent Sensor Derived from Electra

software-defined radio)

l CMMI-3 certification scrutiny

o2) Radar Calibration File Generator (New development)

n Mars 2020
o3) TDS (Inherited as-is from my MSL-self)

o4) SECC (Second Chance, Inherited for update from MSL)

o5) MOXIE (Mars OXidation In-situ Experiment, Customization
from IML (Instrument Management Library))

n All NASA software, Class B
o per "NASA Procedural Requirements", NPR 7150.2B

© 2019 California Institute of Technology. Government sponsorship acknowledged.

SMC-IT 2019
DJB-6

Qualities Methods

n Stakeholders

o Who must say "Yes"?

o Who can say "No"?

o Subject Matter Experts?

n Schedule

o Receivables

o Deliverables, chunked by release cycle

n Budget

o Rule of thumb: 10% on management
itself

n CM (Configuration Management)

n Training / hiring: what skills you need

o Languages, operating systems, tools...

n Acronyms, Glossary

n Heavyweight:

o Comprehensive plan is the 1st
deliverable, signed by a half-dozen
people. Details processes

n Lighten up:

o Stakeholders can agree to be advised
of changes rather than consulted for
each one.

o Receivables list needs what, when,
from-whom, to-whom, and status.
Describe the minimum needed for
clarity between from-whom and to-
whom.

o Schedule and budget establish that on
this-date someone delivers this-item.
Granularity to make progress evident.

Management /
Development Plan Ex, TDS: "Your signature only

means that you trust their
signature, not that you read it."

SMC-IT 2019
DJB-7

Qualities Methods

n What does success look like?

o Functionality, yes, and...

o Capacity ("for 20,000 users...")

o Performace

o Reliability, fault handling

o Testability

n All stakeholders have the same idea

n Link development with test

n Heavyweight:

o "Shall" statements

o Requirements are complete and signed
before development begins.

n Lighten up:

o Delegate

o Write the tests first, and require that
each test passes. Pro-tip: prioritization

o Go ahead and code it 1st, calling it
"requirements exploration"

o "Implement the flowchart on this
whiteboard picture"

o "The data-packet shall be this table"

o Put the pictures and tables in CM!

Requirements Ex, RCF: All stakeholders
agreed, in writing, "Do what

Elaine says."

SMC-IT 2019
DJB-8

Qualities Methods

n Architectural Views

o Physical

o Behavioral / Functional

o Operational

o Data and Interfaces

n Trade studies

n Detailed Design

n Heavyweight:

o Many pages

o How to do it wrong:

l Write docs after the fact

l Never read it, or update it

n Lighten up:

o Memory map as header file, laid out
and commented well enough to be
readble by non-coders

o Trade-studies captured as trouble-
ticket comments, or email threads, and
pointed to

o Design baked into the code anyway, so
manage the comments with mark-up
tags.

Design Description Ex, SECC: Started with a
Table of Contents. Every new

question went in there.

SMC-IT 2019
DJB-9

Qualities Methods

n Describe Unit, Integration,
Acceptance, Regression testing

n Test approaches: Test, Demonstration,
Analysis, Inspection, Simulation, ...

n Problem reporting, tracking

n Tools you will use

o Scripting languages? Logic Analyzer?
Oscilloscope?

n Venues

o Standalone workstation

o Software simulators

o Hardware – breadboard, engineering
model, high-fidelity, flight article

n Identify critical capabilities (safing,
hardware checkout, re-programming)

n Heavyweight:

o Driven by RVM (Requirements
Verification Matrix)

n Lighten up:

o Continuous regression testing set up
with the very first test, so later tests get
written to plug in.

o Group procedures into test sets by:

l Delivery cadence, e.g., boot PROM
before re-loadable images.

l Venue, and personnel

l Criticality

o List every test procedure

Test Plan Ex, RCF: Started with Makefile
"make test" calling sub-tests.
Plan was "implement that".

SMC-IT 2019
DJB-10

Qualities Methods

n Exercise specific requirement(s)

n List venues, steps, expected results

n Heavyweight:

o Map procedures to requirements

o Scrupulously record date, time, testers

n Lighten up:

o "Run script #17"

l Which of course captures its own
results, possibly saved to CM

o Template test procedure in CM no later
than the fourth test. Peer-review the
template. What are the input files?
Where does output go? How are
errors handled?

o SUCCESS affirmatively shown; not just
"did not see a failure"

o Cross-cutting

Test Procedure(s) Ex, SECC: 100 requirements,
plus ~130 additional
Verification Items.

SMC-IT 2019
DJB-11

Qualities Methods

n Unambiguously decide whether
development of some feature can stop
now. I.e., requirements have been
met.

n Can easily be more data storage than
the rest of the artifact collection.

n Heavyweight:

o Recall that VnV may rest on a
Requirements Verification Matrix
(mapping requirements to results)

o Define point by point, in text, what to
observe in each result to check-off
each requirement.

n Lighten up:

o If the requirement was "pass this test",
the mapping is pretty simple.

o Capture a set of "golden runs" for
comparison in later re-runs. So you've
walked through the output thoroughly,
and the regression tests is simply
"output the same thing"

Test Result(s) Ex, TDS: Results were a filled-
in copy of procedures, and

comparison with golden runs.

SMC-IT 2019
DJB-12

Qualities Methods

n Command Dictionary

n Telemetry Dictionary

n Flight Rules

n Idiosyncracies

n Known bugs

n Expected usage, Concept of
Operations

n Consumable limits

o e.g. write-cycles in a chip

n Heavyweight:

o Individual, signed-off document

o Customer may be the next level of
integration, rather than end user

n Lighten up:

o Enlist the user to write the parts they
care about most, based on informal
discussions with developer

o Use a real technical writer to interview
developers and create first draft.

o When emailed a question, answer with
a documentation draft section

User Docs Ex, MOXIE: User wrote a
command's help msg up front

as the specification.

SMC-IT 2019
DJB-13

Qualities Methods

n Product Identification

n Development System Description

o Tool chain, with versions

n By version:

o Capabilities implemented

o Change Requests included

o Bugs fixed

n Known bugs

n Test Summary

n Checking, Building, and Loading
instructions

n Heavyweight:

o Signed-off document lives separately
from code

n Lighten up:

o Build instruction one-liner: "make build"

o Another one-liner "make versions" can
spit out versions of as-run compilers,
interpreters, libraries, OS, packages,
etc.

o A picture is worth 1,000 words.

l "Do it like this"

RDD (Release
Description Doc) Ex, TDS: Included annotated

photos with PROM-burner and
5 chips.

SMC-IT 2019
DJB-14

Qualities Methods

n Bring stakeholders onto same page

o But, different sub-groups for different
subject matter

n Peer reviews

o Of each artifact, each algorithm, each
data item...

n Milestone reviews (PDR, CDR, ORR,
SRCR)

n Heavyweight:

o Slide package summarizes key points

l Rarely explains in depth

l Not signed

l Not updated

n Lighten up:

o Artifacts already capture the important
information. Use, refer to, or quote
them in the review

o Peer reviews as cross-training exercise

Reviews Ex, SECC: Review was 22
slides, no new words. Guided
tour of Design Doc sections.

SMC-IT 2019
DJB-15

Qualities Methods

n Stakeholders agree what has been
delivered

n Lists all deliverables, and their status

o Including test results

n Signed by:

o Person who did the development

o Person who did the testing

o (ideally) Independent 3rd party, e.g.
Quality Assurance

o Person who paid the bills

n Heavyweight:

o Big meeting with all stakeholders

o Formal checklist

n Lighten up:

o Barring objection, call it done

Final Sign-off Ex, TDS (M2020): inherited as
part of the hardware rather

than being "delivered".

SMC-IT 2019
DJB-16

Tailoring Artifacts

n What do you need to know when?
oRecord it as it is decided, not a doc exercise after it's too late to get ROI (i.e., the

1st time the question is asked, not the 5th)

oRather than answer questions by email; write the artifact and email that for proof-
reading ("is this clear?")

n Bake information into tool-chain.
oArtifacts become lightweight collections of pointers and references

oDocumentation generators like doxygen, pydoc, etc, *if* documentation is going to
be used

SMC-IT 2019
DJB-17

Tailoring Artifacts, cont

n Document, wiki, cocktail-napkin are all fine, if they supply:
oRevision Control

oDisaster recovery

oSearchability

o30-year retention?

n "The Board views the endemic use of PowerPoint briefing slides
instead of technical papers as an illustration of the problematic
methods of technical communication at NASA."
o -- Columbia Accident Investigation Board, August 2003

